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LIQUID CRYSTALS, 1993, VOL. 13, No. 6, 775-795 

A study on the relaxation phenomena of nematic polymers after 
cessation of shear flow 

by P. K. CHAN and A. D. REY* 
Department of Chemical Engineering, McGill University, Montreal, 

Quebec H3A 2A7, Canada 

(Received 28 September 1992; accepted 26 January 1993) 

A viscoelastic model, composed of the Ericksen and Landau-de Gennes 
nematic continuum theories, is used to study numerically the relaxation pheno- 
mena after cessation of simple shear flow for a model rigid rod uniaxial nematic 
polymer. This model predicts that under certain conditions the relaxation of 
stored molecular and coupling elastic free energies due to periodic fluctuations in 
the scalar order parameter results in a transient periodic distortion of the director 
field. These conditions are that: ( I )  the ratio of the wavelength scales of the initial 
periodic spatial variation in the scalar order parameter k, to the initial periodic 
planar director orientation fluctuation k,  (i.e. k,/k,) and the amplitude of the 
initial S spatial variation exceed certain minimum values, and (2 )  k ,  is not zero. It 
is shown that the wavelength selection mechanism is controlled by the director 
reorientation-induced backflows. The digitized optical patterns of the transient 
periodic director field show transient periodic optical patterns similar to the 
transient banded texture nematic polymers exhibit after cessation of shear flow 
when observed between crossed polars. The numerical results and digitized 
optical patterns replicate frequently reported experimental observations. 

1. Introduction 
Strong shear flow deformations are invariably a part of nematic polymer 

processing, such as in the injection moulding of three dimensional objects. During 
processing the molecules are highly oriented along the flow direction; it is this shear 
flow-induced molecular orientation that gives nematic polymers their excellent 
mechanical properties. However, once the flow has stopped and heat treatment (i.e. 
solidification) has begun, the shear flow-induced molecular orientation decays away 
slowly [ 13. During the relaxation period, the spatial distribution of the average 
molecular orientation, defined by a unit vector called the director n , may reorient 
into a periodic pattern along the prior shear flow direction after some finite time 
[2-81. Therefore, it is of practical importance to understand the relaxation pheno- 
mena and pattern formation of nematic polymers after cessation of shear flow. 

The periodic pattern mentioned above is due to a serpentine sinusoidal director 
field [9, 101, and only forms when the previously applied shear rate 9 and strain y (or 
shearing time t s )  exceeded certain critical values [2-81. Depending on the material 
and prior shearing conditions, the pattern has a wavelength in the range of 
2 x 10-6m to 6 x m [2, 4, 5, 10-151 and the maximum planar angle $m in the 
sample plane that extends from the prior flow direction to the director ranges from 
8" to 45" [2, 5, 9-11, 151. When this periodic director field is observed between 
crossed polars with one of the polars parallel to the flow direction, a banded texture 
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776 P. K. Chan and A. D. Rey 

is observed [l-241. The banded texture consists of fine, long, parallel and equidistant 
black lines [2], and is a characteristic property of all nematic and cholesteric 
polymers [O]. Recently, several investigators [3, 6, 8, 141 reported the idea of stored 
elastic free energy as the internal driving force for transient and spatially periodic 
director reorientation. Despite being well characterized, however, no definite expla- 
nation has yet been reported on the mechanism of the transient banded texture 
formation after cessation of shear flow for nematic polymers. 

Shear flow affects the scalar order parameter S ,  which is a measure of the degree 
of molecular alignment along n, in uniaxial nematic polymers; this can then result in 
spatial variations in S [25]. This idea of spatially non-homogeneous S is supported 
by the predicted periodic temporal oscillations of S in monodomain and spatially 
invariant nematic polymer systems during shear flow [25-271. Nematic polymers also 
contain high concentrations of defects, which are points and lines (or disclinations) 
where n changes discontinuously [28], and this also contributes to spatial variations 
in S. It is then necessary to use a continuum theory that accounts for spatial 
variations in S when modelling numerically flows of nematic polymers. 

Recently, Ericksen [29] proposed a modified version of the Leslie-Ericksen 
continuum theory [30-321 to accommodate static and moving defects, and to model 
the more complex behaviour of nematic polymers [25, 29, 331. Examples of these 
complex behaviours include: (1) the formation of periodic textures during shear 
flow, (2) the formation of periodic textures after cessation of shear flow, (3) the first 
and second normal stress differences change sign from positive to negative and back 
to positive as the shear rate increases, (4) the viscosity increases with temperature, 
( 5 )  the liquid crystal polymer (LCP) undergoes shear thickening as the shear rate is 
increased, and (6) the Cox-Merz rule is not obeyed. The most significant modifica- 
tion of the Leslie-Ericksen theory is the addition of S, and its spatial and temporal 
gradients. This theory has already been used lately by Calderer [34-371 to describe 
some salient features of nematic polymer flows. In addition, the Ericksen theory 
contains the essential S spiatal variation terms in the elementary static models used 
successfully by Barber0 and Durand [38, 391 to study surface melting, by Goossens 
[40] to study the anchoring energy, by Galerne [41] to study the uniaxial to biaxial 
phase transition, and by Maddocks [42] to study static disclinations in nematic 
phases. 

The objective of this paper is to present a numerical study of isothermal 
relaxation phenomena and pattern formation after cessation of steady rectilinear 
simple shear flow for a model incompressible uniaxial nematic polymer phase 
composed of rigid rod-like molecules using the Ericksen [29] and Landau-de Gennes 
[43] nematic continuum theories. Furthermore, this paper examines specifically the 
effects that an initial periodic spatial variation in S (i.e. base value So and amplitude 
A,) have on the time for pattern formation tb and the maximum planar orientation 
+m in the resulting transient periodic director configuration. Lastly, the results are 
discussed within the context of Frank and molecular elasticities. Partial results 
obtained using the model developed in the present paper are given by Chan and 
Rey [44]. 

2. Theory and balance equations 
In Cartesian tensorial notation for an incompressible fluid, the linear momentum 

balance equation is 
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Relaxation of sheared nematic polymers 777 

pV = F + V - z, (1) 
where p is the density, V is the velocity, and F is the external body force per unit 
volume. The superposed dot denotes the material time derivative. The constitutive 
equation for the stress tensor z, according to the Ericksen theory [29], is given as 

aFL 8FL 
avn avs z= -pb---(Vn)T----- VS+fil(S)hn +a,(S)(nn:A)nn 

+ a,(S)nN + a,(S)Nn + a4(S)A +a,(S)nn - A + as(S)A. nn (2) 

where the kinematic quantities are defined as follows: 

1 
A = 3 [(VV)T + VV] (3 a) 

N = n - R . n  (3 b) 

1 
2 R = -  [(VV)T-VV]. (3 c> 

The (a,} ,  i=  1, . . . , 6,  and f i ,  are viscosity coefficients that depend on S ,  p is the 
pressure, and b is the unit tensor. In addition, A is the rate of deformation tensor, N 
is the angular velocity of the director relative to that of the fluid, and R is the 
vorticity tensor. The ijth Cartesian component of Vn and VV are anj/axi and dy/dxi, 
respectively. FL is the Landau-de Gennes free energy density expressed as follows: 

3 1 9 3 1 3 
FL=fO(T) A(T - TE)S2 +T BS3 +- CS4 +- ( L ,  +g L,)(VS)’ +s L,(n - VS)’ 16 4 

9 1 1 

3 3 
2 4 

+ ~ S 2 [ ( L l + ~ L 2 ) ( V . n ) 2 + L l ( n . V x n ) 2 + ( ~ l + - ~ , ) ( n  2 x ~ x n ) ~ ]  

+- L,S(V. n) x (n -VS)+- L,S(n x V x n). VS, (4) 

wherefo(T) is the isotropic free energy density at temperature T, and A ,  B, C ,  L,  
and L2 are constants. TE is a temperature slightly below the clearing temperature T,, 
where the first order transition occurs. Equation (4) contains four types of terms. 
The first four terms contain only S ,  while the next two contain spatial variations of 
this parameter. The following term accounts for n spatial variations, and is 
expressed as such to resemble the Frank-Oseen-Zocher free energy density [43]. It 
should be remarked that, to second order in the Landau-de Gennes theory, there are 
only two independent elastic constants (L,  and L,); however, there are three for 
nematic phases [43]. The last two terms account for the couplings in the variations of 
S and n. In this paper, these four terms are conveniently called the molecular free 
energy, the molecular elastic free energy, the Frank elastic free energy, and the 
coupling elastic free energy, respectively. The coefficients A, B, and C are not known 
for a nematic polymer. It is then convenient to replace the terms introduced by these 
coefficients in the free energy density by the following Maier-Saupe expression [45] 
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778 P. K. Chan and A. D. Rey 

where kB is the Boltzmann constant, 9 is the rod concentration, and U is the 
dimensionless nematic potential. Now, U is the only parameter, but typical values 
are known [46]. 

The balance equations for n and S are defined, respectively, as follows: 

where y1 ~ y z  and P2 are viscosity coefficients that depend on S .  In addition, 

71 = a 3  - a Z ,  (7 4 
y z  = a6 -a5 = a2 + ag . (7 b) 

The equality in equation (7 b) is due to Parodi [47]; therefore, there are only five 
independent ai viscosity coefficients. 6FL/6(* )  denotes the functional derivative of F ,  
with respect to (*). The inertia of the director is negligible and neglected. 

The remainder of this section consists of the development of the partial 
differential equations that govern the relaxation phenomena of partially ordered 
nematic polymers after cessation of simple shear flow. Figure 1 shows the simple 
shear flow geometry, and defines the Cartesian coordinate system. The upper plate 
velocity is V,, 4 is the planar director orientation angle, h is the plate spacing, and L 
is the, sample length. It is useful to assume that the plates are infinitely wide; hence, y 
is the neutral direction and a(*)/ay=O, where (*) denotes a dependent variable. In 
addition, the study in this paper is restricted to the case where the director remains 
parallel to the bounding plates, a(*)/az = 0, F = 0, the director reorientation-induced 
backflow is a creeping flow, and V,= V , = O .  Furthermore, the model presented in 
this paper is a viscoelastic one, where the elastic constants are dependent on S but 
the viscosity coefficients are not. This model then approximates the physical 
behaviour of uniaxial rigid rod-like nematic polymers after cessation of shear flow. 
More rigorous models should include the dependence of the viscosity coefficients on 
S ,  but their implementations await the availability of the required physical 
parameters. 

Figure 1. Schematic representation of the simple shear flow configuration, and definition of 
the Cartesian coordinate system. The planar director orientation angle measured in 
radians is 4 ,  V' is the upper plate velocity, h is the plate spacing, and L is the sample 
length. 
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Relaxation of sheared nematic polymers 779 

The relaxation phenomena is best described in Cartesian coordinates (see figure 
1); therefore, the director field is defined as 

n=(cos 4, sin 4, 0) (8) 

where the unit length constraint, n - n = 1 ,  is automatically satisfied. The velocity 
field during the relaxation process then simplifies to 

V=(O, v,, 0)  (9) 

and, within the planar one dimensional approximation, the three unknowns are as 
follows: 

S=S(x, t); 4=4(x ,  t); v,= v,(x, t). (10a, b, c) 

The three equations that govern the behaviour of Vy, 4 and S are the y 
component of the linear momentum balance (see equation (l)), the z component of 
the angular momentum balance (see equation (6 a)), and the scalar orientational 
order balance (see equation (6 (b)) . They are, respectively, as follows: 

where the angle-dependent viscosity functions {qi>, i= 1, . . . , 8, and elastic functions 
(q}, i= 1, . . . , 9, are given in the Appendix. The symbolic algebra program 
Theorist TM [48] was used to derive these equations. 

The material physical constants used in this study are for the nematic polymer 
poly(4,4’-dioxy-2,2’-dimethyl azoxybenzene dodecanediyl) (DDA9) [49], and are 
tabulated in table 1. The sign of ct3 is not likely to alter the representative results 
presented below. This is due to the fact that this paper studies the relaxation 
phenomena after cessation of steady rectilinear shear flow; i.e. no director tumbling 
occurs during or after the shear flow deformation. The values for b l ,  p 2 ,  K ,  K ,  and 
K6 are assumed, because no experimentally determined values can be found for 
them. The magnitudes of the three elastic constants are around the estimated value 
of N [50]. Furthermore, the three elastic constants fulfill the constitutive 
hypothesis set up by Maddocks [42] 

K ,  4- K6 > K .  (12) 

The values for 
satisfied [27, 45, 511 

and p2 are chosen as such so the following predicted ratios are 

IP1 I 82 IPIIN --%lo; - % l ;  --2 
Y1 Y1 8 2  - 
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780 P. K. Chan and A. D. Rey 

Table 1. Physical constants for DDA9 [49]. 

Viscosities/N s m-' 

m1 - 393 
m2 -415 
a3 -4 
a,+@, 429 
m 4 + m 6  10 
81 t -41 1 x 10' 
82 t 205.5 x lo2 

Elastic constants/lO-" N 

3.78 

3.78 

37.8 

t Estimated values (see text). 

The initial and periodic boundary conditions are as follows: 

4i=A,sin k nx+-n at t=O, O l x l L ,  
( 4  9 

a4 
ax 
-=0 a t t>O,  x=O, 

-- -0 a t t>O,  x = L ,  a4 
ax 
as 
a x  
-=0 atr>O, x=O, 

as 
-=O a t t>O,  x = L ,  (149) ax 
V , = O  a t t>O,  x=O, (14 h) 
V , = O  a t t>O,  x = L ,  (14i) 

where A, and A ,  are the wave amplitudes, k, and k, are the wavelength scales, and 
So is the base value for the wave. 

Equations (1 1 a, b, c) are solved numerically in dimensionless form. The scaling 
variables, dimensionless governing equations, and dimensionless initial and periodic 
boundary conditions are given in the Appendix. The Galerkin finite element method 
is used with 252 linear elements [52]. The time integrator is the first order Euler 
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Relaxation of sheared nematic polymers 78 1 

predictor-corrector method [53], and the Newton-Raphson method is used for 
solving the system of non-linear algebraic equations. For all calculations, the length 
L is chosen as 157-5 x 10-6m to accommodate sufficiently any observable periodic 
pattern which nematic polymers may form after cessation of simple shear flow. For a 
typical nematic polymer, U = 5-8; the equilibrium S value is then S,, = 0.8 [45]. In 
addition, for a typical nematic polymer, the molecular length L,= 1-5 x 10-’m and 
the molecular diameter d,= 1.5 x lO-’m [54, 551. Hence, the concentration, using 
the relation [45] 

is 2-53 x loz3 r o d ~ m - ~ .  At room temperature (T=298 K), the product k,9T 
=i .o4x  103~m-3. 

3. Typical results on the relaxation phenomena 
Table 2 tabulates qualitatively some of the representative results from the 

comprehensive study made on the relaxation phenomena of nematic polymers after 
cessation of shear flow [56]. By comparing the results to cases 1, 2, 6, 9, 10 and 14 
with cases 3,4, 8, 11, 12 and 16, respectively, it is noted that planar director rotation 
away from the prior shear flow direction only occurs if As exceeds a critical (or 
minimum) value. In addition, by comparing the results for cases 3 and 11 with cases 
7 and 15, respectively, it is also noted that the ratio ks/k, must also be greater than a 
minimum value. This growth is aperiodic if k,= 0 (see cases 3 ,4  and 81, but periodic 
if k,  # O  (see cases 11, 12 and 16) initially. Since nematic polymers are known to have 
spatial variations in S during shear flow [25], and that transient periodic director 
fields are quite common phenomena in these polymers as seen in [9, 10, 57-59], the 
study in the remainder of this paper is based on case 16. Cases 11 and 12 are not 

Table 2. Some results from the study using equations (14a,b, c) as the initial conditions 
(So =0.75 for all cases). 

~ ~~ ~~ ~~ ~ 

Aperiodic Periodic 
Case A,/rad k,/m-’ A, ks/m-’ 161 Growth growth growth 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0 2.1/L 0 01 
0 2.1/L 0.01 

0 21/L 0.01 
0 21/L 0.01 

0.01 2.1/L 0.01 
0.01 2.1/L 0.01 

0.0 1 21/L 0.01 
0.01 21/L 0.01 
0.01 21/L 0.108 
0.01 21/L 0.108 

0 2.1/L 0.108 
0 2.1/L 0.108 

0 21/L 0.108 
0 21/L 0.108 

0.01 2.1/L 0.108 
0-0 1 2.1/L 0.108 

12.6/L 
126/L 
12.6/L 
126/L 
12*6/L 
126/L 
12.6/L 
126/L 
12.6/L 
126/L 
12.6/L 
126/L 
12*6/L 
126/L 
12.6/L 
126/L 

No 
No 
Yes 
Yes 
No 
No 
No 
Yes 
No 
No 
Yes 
Yes 
No 
No 
No 
Yes 

N.A. N.A. 
N.A. N.A. 
Yes No 
Yes No 

N.A. N.A. 
N.A. N.A. 
N.A. N.A. 
Yes No 

N.A. N.A. 
N.A. N.A. 
No Yes 
No Yes 

N.A. N.A. 
N.A. N.A. 
N.A. N.A. 
No Yes 
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782 P. K. Chan and A. D. Rey 

included because their k,s give periodic director field wavelengths that are greater 
than normally found in experiments for nematic polymers after cessation of shear 

The length scale k, gives a periodic director field wavelength of approximately 
1 . 5 ~  10-'m. This is a typical wavelength, as measured experimentally, for a 
transient periodic director field formed after cessation of shear flow [2 ,  4, 5, 10-13, 
201. Furthermore, it is shown below that this wavelength is approximately the fastest 
growing one when compared to longer and shorter wavelengths. It turns out, as 
shown below that the selection mechanism depends on the director reorientation- 
induced backflow. The length scale k, and amplitude A,  are chosen to represent a 
possible spatial variation in S. These are certainly not the only possible values; 
however, there are no known experimentally determined results on the spatial effects 
that shear flow has on S .  

Figure 2 shows typical relaxation phenomena for S (first row), 4 (second row) 
and the dimensionless velocity V'* (third row) along x* after cessation of shear flow 
at t = 0.0 s (first column), t = 4.0 s (second column), t = 14.3 s (third column), and 
t = 31.7 s (fourth column). The initial state represents minor director fluctuations, 
but considerable S gradients. The relaxation of the S spatial variations after 
cessation of shear flow produces spatially periodic torques on the director ( t  = 4.0 s 
and 14.3 s) to reorient from the prior flow direction. Figure 3 shows the free energy 
per unit area as a function of time. The free energy decreases monotonically with 
time; hence, the transient periodic pattern is unstable. At t = 0.0 s, the director 
fluctuations and S spatial variations raise the molecular, Frank and coupling elastic 
free energies of the system. As time progresses, the growth and decay of a periodic 
director field is the fastest route for the system to release its stored molecular and 
coupling elastic free energies. This is primarily due to the couplings between n and 
VS introduced by the L, (or, equivalently, K 6 )  constant in the Landau-de Gennes 
free energy expression (see equation (4)). The dot product n - VS goes to zero when n 
and VS are orthogonal. Since VS is along the prior flow direction, VSfO and only 
planar director orientation is considered, the magnitude of 4 then grows. As the S 
spatial variations continue to decay, so do the driving torques and the director 
begins to reorient towards its initial state ( t  = 31.7 s). At t 2 31.7 s, V S r O ;  therefore, 
F ,  reduces to the molecular free energy term (Fs)  and the Frank elastic free energy 
term. The present fastest route that now minimizes the stored Frank elastic free 
energy is that where the directors reorient to a uniform orientation [56]. 

The response is viscoelastic since periodic director reorientation creates periodic 
backflow, as shown in the third row of figure 2 .  This is due to the initimate coupling 

between flow and orientation [30-32]. The phase difference of - n rad between the 4 
and \*spatial profiles is physically consistent. Maximum director rotation couples 
with minimum flow, and minimum director rotation couples with maximum flow. 
This kind of periodic coupling is seen in the magnetic reorientation of nematic 
polymers [57,58]. Unlike the magnetic reorientation phenomenon, however, the sign 
(+) of \* at t = 14.3 s and any position x* switches to the opposite sign at t = 31.7 s; 
i.e. at any x*, V,* becomes (- V,*). This is due to the reversal of director rotation; at 
t= 14.3s the directors are rotating away from x*, but at t=31.7s the directors are 
rotating back to x*. The coupling between reorientation and flow is evident in this 
model through: 

flow [2, 4, 5, 10-13, 201. 

1 
2 
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-340 i \  

0 10 20 30 

t / s  

Figure 3. Transient relaxation of the stored free energy per unit area. 

( 1 )  the q l ,  q z ,  and q3 terms in equation (1 1 a), and 
(2) the q6 term in equation (1 1 b). 

Figure 4 shows the maximum planar orientation angle 4m (first row), the 
maximum dimensionless velocity I/u,m* (second row) and the free energy per unit 
area (third row) as a function of time at the early (first column; t I 3 0  s) and later 
(second column; t I300s)  stages of the periodic director field formation. The 
parameter is the director field wavelength &; &,=5*0 x 1 K 6 m ,  &= 1.5 x 10-5m 
and I ,  = 0.3 x lo-' m. From the first row of this figure, it is noticed that the periodic 
director field with &= 1.5 x m is the fastest growing one when compared to 
longer (At,=6.3 x 10-5m) and shorter ones (Ab=5.0 x 10-6m). There is a cross-over 
o f the~ ,cu rves fo rAb=1~5x10-smandAb=6~3x10-5mat  t r 5 0 s .  Since there 
are less elastic distortions in the latter wavelength than in the former, it will take 
longer for dm in the longer wavelength to relax to equilibrium. The total free energy 
(third row) decays similarly for the three therefore, for the case presented here, 
elasticity does not play a significant role in the wavelength selection mechanism. 

Figure 5 shows the relaxation phenomena of q5 along x* after cessation of 
shear flow for 1,=5*Ox 10-6m (first row), Ab=1.5x 10-5m (second row) and 
Ib=6.3 x m (third row) at  t=0.0 s (first column) and t = 14.3 s (second column). 
Although the initial periodic fluctuations (first column) for the three A,s are quite 
similar, the resulting director fields at t= 14.3 s are not. Further insights are obtained 
by studying the power spectra of the director fields. Figure 6 shows these power 
spectra for Ab=5.0 x m (top graph), I,= 1.5 x lO-'m (middle graph) and 
I,=6.3 x m (bottom graph). They are obtained by squaring the moduli of the 
Fourier transforms [60] of the corresponding director fields at t = 14.3 s in figure 5. 
The fast Fourier transform operation in MATLABTM [61] is used for this purpose. 
Figure 6 shows that the director relaxation phenomenon is very different for each &. 
There are only two modes at the shortest &, four modes at the longest ilb, but Six 
modes at the intermediate 1,. Periodic director rotations create periodic backflows 
[57, 581, which tend to increase the rate of director reorientation by reducing the 
magnitude of the rotational viscosity [62]. Consequently, since the intermediate 
wavelength has the most modes of periodic director rotation, it is then expected that 
this A, be the optimal one. Since the longest &, has the second largest number of 
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column) and later (second column) times. The periodic director field wavelengths are: 
1,=5.0x 10-6m (- ), 1,=1.5x lO-’m (-----), and1,=6.3x IO-’m (.....) . 

Figure 4. 

modes, it is then expected to be the second fastest growing wavelength of the three. 
Lastly, since the shortest A,, has only two modes, it is the slowest growing wavelength 
of the three. This is consistent with the results shown in the first row of figure 4. The 
results for q:,,,* shown in the second row of figure 4 is then a manifestation of the 
intimate coupling between the multiple modes of periodic director rotation and 
backflow. 

4. Periodic optical patterns 
Since a nematic phase has cylindrical symmetry, it is uniaxially birefringent in its 

natural equilibrium state; i.e. it has two refractive indices. As a result of this, a ray of 
light incident on the phase will be divided into two rays which vibrate orthogonally 
to each other and to the direction of propagation of the incident beam. They are the 
ordinary (0-) ray with refractive index no, and the extraordinary (E-) ray with 
refractive index n, . Since the 0- and E-rays travel at different velocities, a phase lag 
dL between the two rays is introduced as they propagate through the medium. When 
the sample is placed between crossed polars, an interference pattern is obtained 
above the analyser. The analyser allows only the vibration components of the 0- and 
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t = O . O s  t = 14.3 s 
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Figure 5 .  Spatial planar orientation angle 4 profiles at t = O . O s  (first column) and t =  14.3 s 
(second column). The periodic director field wavelengths are: &=50 x 10-6m (first 
row), i b = 1 . 5 x  10-5m (second row) and Ab=6.3 x IO-’m (third row). 

E-rays parallel to it to be transmitted for interference. This means that extinction (or 
no light transmission) only occurs when the vibration and transmission directions 
are orthogonal. The intensity of the interference I is [63-651 

I = sin’ (24) sin’ (; &)> 

where A ,  is the amplitude of linearly polarized light. The phase lag is defined as 

27chL(n, - no) sin’ @ 

AL 
3 (16) __- 6L = 

where h, is the distance the light ray travels in the medium, 1, is the incident light 
wavelength, and CD is the angle between the incident light and the optic axis. By 
assuming a constant phase lag [66] in equation (1 5), the relative intensity I, is 

1, = sin’ (24).  (17) 
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Figure 6. Power spectra of the planar orientation angle at t=14.3s for the following 
periodic director field wavelengths: 1,=5.0 x 10-6m (top graph), A,= 1.5 x 10-5m 
(middle graph) and 1,=6.3 x 10-5m (bottom graph). 

Figure 7 shows the digitized optical light patterns of the corresponding director 
fields in figure 2 obtained using equation (17). At t=O*Os,  the optical pattern is all 
black. This implies that the directors, as specified by the initial condition, are highly 
aligned along the prior shear flow direction [4]. At early times (t=4.0s), an optical 
periodic pattern of weak contrast, and similar in appearance to the banded texture, 
begins to form. As time progresses (t = 14.3 s), the directors rotate away from the 
prior flow direction, and the optical pattern develops into a well-defined period 
pattern with good contrast. It then remains for some time (t=31*7s). The develop- 
ment of these optical patterns is similar to the experimental observations of the 
development of the banded texture formed after cessation of shear flow made by 
Kiss and Porter [I21 and Marsano et al. [4]. This model, with the given physical 
material constants and initial and periodic boundary conditions, demonstrates that 
the relaxation of stored molecular elastic and coupling free energies due to periodic S 
spatial variations results in a transient periodic distortion of the director field, such 
that a transient periodic optical pattern is seen when the sample is viewed between 
crossed polars. Simulations employing this model can then be used to replicate 
several experimental observations reported in the literature on the banded texture. 
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Figure 7. Time evolution of the digitized optical light patterns representing the patterns seen 
between crossed polars for the director fields in figure 2. The times are: (a) t = O . O s ,  
(b)  t=4.0 s, ( c )  t =  14.3 s and (d) t =  31.7 s. The relative maximum intensity is white and 
the relative minimum is black. 

This is done by examining the effects that the base value So and amplitude As of the 
initial periodic spatial variation in the scalar order parameter S have on the time for 
periodic director field formation t b  and the resulting maximum planar orientation 
angle $", for the approximate optimal wavelength determined above. 

Figure 8 shows the dependence of the time for periodic director field formation t ,  
on the base value of the initial scalar order parameter spatial variation So with the 
amplitude of the periodic variation As as the parameter; A,=0.080, A,=0.095 and 
A,= 0.108. The time for periodic field formation decreases monotonically with 
increasing So for a given A,. A periodic director field is deemed subjectively [4] to be 
present when I , =  0.005 (i.e. $,=0.035 rad). The region of interest for S o  is chosen as 
0.35 I S,, I0.75, because S < S,, during shear flow [26, 271. The region of interest for 
A,  is taken to be 0~080IASI0~108 ,  because it represents a possible range for S 
spatial variations. The trends of the curves in this figure are due to the intimate 
coupling of director reorientation and viscous backflow. Figure 9 shows the 
dependence of the maximum dimensionless velocity <,,* on So with As as the 
parameter; A,=0-080, A,=0.095 and As=0.108. It shows that for a given A,, <,,* 
increases monotonically with S o .  The rate of director reorientation increases with So 
for a given As because Vy,,* increases; therefore, t b  decreases. Similarly, for a given 
So, the rate of director reorientation increases with A,  because J$m* increases; hence 
t b  decreases. 

Figure 8 resembles very much like the frequently reported t b  - j - t, experimental 
plots [3-81, where t ,  is the prior shearing time. It is known, from numerical 
predictions on monodomain and spatially invariant nematic polymer systems during 
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789 

S O  

Figure 8. Time for periodic director field formation t ,  as a function of the base value of the 
initial periodic scalar order parameter spatial variation S o .  The amplitudes of the 
periodic variation are: A, = 0.080 (- ), A,=0.095 (-----) and A,=0.108 
(. . . . .). 

shear flow, that S decreases with Ij at low shear rates but increases with Ij at 
sufficiently high shear rates [26, 271. This could then explain the fact that the banded 
texture only appears when Ij 2 Ij, [2-81. In the decreasing region of the S versus Ij 
relationship, the directors during shear flow are predicted to be oscillating between 
two orientations. Conversely, the directors are highly aligned in the flow direction in 
the increasing region, which is the prerequisite for banded texture formation after 
cessation of shear flow [3-5, 121. Furthermore, the present model predicts that a 
minimum As is needed for periodic director field formation (see discussion for table 
2). By making the plausible hypothesis that A,  increases with ts during shear flow, 
the minimum As is then related to the critical shearing time ts,c needed for banded 
texture formation [2-81. 

20 I , 

I I 

0.35 0.45 0.55 0.65 0.75 

Figure 9. Maximum dimensionless velocity V,,,* as a function of the base value of the initial 
periodic scalar order parameter spatial variation S o .  The amplitudes of the period 
variation are: A, = 0.08ci (-), A, = 0.095 (- - - - -), and A,  = 0.108 (. . 1 . .). 
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0.00 L , - l  
0.35 0.45 0.55 0.65 0.75 

S O  

Figure 10. Maximum planar orientation angle b,,, as a function of the base value of the 
initial periodic scalar order parameter spatial variation S o .  The amplitudes of the 
periodic variation are: A,  = 0.080 (- ), A,=0.095 (-----) and A,=0.108 
(. ' ' ' .). 

Figure 10 Jiows the dependence of the maximum planar orientation 4m on the 
base value of the initial periodic scalar order parameter spatial variation So with 
the amplitude of this variation As as the parameter; A,=0.080, As=0.095 and 
A,  = 0.108. The maximum planar orientation increases monotonically with So for a 
given A , .  Examples of the contrast differentials are shown in figure 1 1 for A,  = 0.108 
and (a)  S,=0.35, (b) S,=0.55 and (c) S,=0.75 at t=14.3s and in figure 12 for 

Figure 1 I .  Digitized optical light patterns representing the patterns seen between crossed 
polars for the director fields at t =  14.3 s. The amplitude of the initial periodic scalar 
order parameter variation is A,=0.108, and the base values of the variation are: 
(u) S,=O.35, (b) S,=O.55 and (c) S,=0.75. The relative maximum intensity is white 
and the relative minimum is black. 
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(4 

79 1 

Figure 12. Digitized optical light patterns representing the patterns seen between crossed 
polars for the director fields at t =  14.3 s. The base value of the initial periodic scalar 
order parameter variation is So = 0.75, and the amplitudes of the variation are: 
(a) A,=0.080, (b) A,=0.095 and (c) A,=0.108. The relative maximum intensity is 
white and the relative minimum is black. 

So = 0.75 and (a)  A, = 0.080, (b) As = 0.095 and (c) A ,  = 0.108 at t = 14.3 s. It is noted 
that the contrast of the periodic optical pattern increases with So and A, ,  which is 
consistent with the fact that So is taken to scale with and the assumption that As 
scales with t , .  It is also noted that the stored molecular and coupling elastic free 
energies increase with either So or As through the L, terms in equation (4), and that 
the system dissipates these energies through periodic director rotation and viscous 
backflow. To counter any increases in S (or, equivalently, S o )  or VS (or, equivalently, 
A,) in these L, terms, n rotates to a greater extent away from the prior flow direction 
(or, equivalently, the magnitude of 4,,, increases). Consequently, the magnitude of 
n . VS decreases, and by equation (17) the relative intensity (or, equivalently, 
contrast) increases. Once more, the intimate coupling between director reorientation 
and backflow is seen by observing the trends in figures 9 and 10; large (small) values 
of drn coincide with strong (weak) <,m*. 

5. Conclusions 
The Ericksen and Landau-de Gennes continuum theories were used in this paper 

to study numerically the relaxation phenomena of nematic polymers after cessation 
of shea flow. The results presented here were restricted to show the effects that the 
amplitude (A,) and base value (So) of the initial periodic scalar order parameter S 
spatial variation have on the time for periodic pattern formation ( tb)  and the 
maximum planar director orientation (4rn) in this transient pattern. Other relaxation 
phenomena in the presence of surface motion, disclination and surface irregularities 
were studied using the Leslie-Ericksen theory [30-321 and the results are available in 
[56]. It has been shown that the relaxation of stored molecular and coupling elastic 
free energies due to periodic spatial variations in S results in a transient periodic 
distortion of the director field, which is energetically unstable. The wavelength of 
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the periodic director configuration depends on the director reorientation-induced 
viscous backflows. 

The numerical solutions, along with the digitized optical patterns, to the 
approximate balance equations are consistent and replicate frequently reported 
experimental observations of the banded texture. These observations are that the 
time for banded texture formation t, decreases as the prior shear rate y' or prior 
shearing time t ,  increases, and that the contrast of the banded texture increases as 1; 
or t ,  increases. Further work on the shear flow of nematic polymers is required to 
quantitatively justify the use of equation (14 b). 

This research is supported by a grant from the Natural Sciences and Engineering 
Research Council of Canada (NSERC). The authors are grateful to the McGill 
University Computer Center for a grant to defray the computational costs of this 
work. P K. Chan acknowledges his postgraduate scholarship from the NSERC. 

Appendix 
The viscosity functions { y l i } ,  i= 1, . . . ,4, in equation (1  1 a) are defined as follows: 

1 

1 1 1 
4-4 2 2 

y 1 3 = z  a1 sin (44)+(a2+a3) sin (24), (A 1 c) 

q -- a1 sin' (24)+- (a5+cc4-a2) cos' $+- (a,+a,+a,) sin' 4, (A 1 d )  

The elastic functions { x i } ,  i= 1, . . . , 9, and viscosity functions fyli>, i= 5, . . . , 8, in 
equations (1 1 b) and (1 1 c) are defined as follows: 

I C ~  = - K S ,  (A 2 4 

(A 2 b) 
1 

IC'= -- KS',  
2 D
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where the relations 
9 

K=9L1+-  L2, 
2 

3 1 
K,=- L ,  +- L2, 

2 4  

have been used. 
The dimensionless equations are obtained by scaling the elastic terms with K ,  the 

K 
viscosity terms with y l ,  the length x with L, the velocity with -, and the time with 

YlL 
@. By doing this, the angle-dependent viscosity and elastic functions become: K 
qi* = qi/yl and xi* = K J K .  The superscript asterisk denotes a dimensionless variable. 
Equations (1 1 a, b, c) then become the following set of dimensionless non-linear 
partia! differential equations: 

a a&* 
ax* at* ax* at* + q 3  ax* ax* ax* ax* 
as a+ 

+q4* --, ( A 3 a )  

(A 3 b) 
a as a&* 

f K 3 *  __ -+q6* - 9  

a 84 + K2* ~ - 
ax* ax* ax* ax* ax* vs*=lC1* pp 

as k,STL2[(  1-- u s-- ) q7* -=- 
at* K 

a as a as 
ax* ax* + K , *  - 

a a 4  *- a v,* 
ax* * 

+ K , *  ~ -++s ax* ax* 
Furthermore, the dimensionless initial and periodic boundary conditions are as 
follows: 

q5i=A+sin k *nx*+-n att*=O, O I x * S l ,  ( +  k )  
att*=O, O S x * I l ,  (A4b) 

& , i * = O  at t * = O ,  O S x * I  1, (A 4 4 

--=O att*>O, x*=O,  (A 4 4 84 
ax* 

(A 4 4 84 
ax* 
as 

-=0 att*>O, x*=O, @ 4 f )  ax* 
as 

- = O  att*>O, x * = l ,  (A 4 s> ax* 

- = O  att*>O, x * = l ,  
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< * = O  att*>O, x*=O, 

< * = O  at t * > O ,  x * = l ,  
(A 4 
(A 4 i )  
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